Rho Signaling Participates in Membrane Fluidity Homeostasis

نویسندگان

  • Daniel Lockshon
  • Carissa Perez Olsen
  • Christopher L. Brett
  • Andrei Chertov
  • Alexey J. Merz
  • Daniel A. Lorenz
  • Marc R. Van Gilst
  • Brian K. Kennedy
چکیده

Preservation of both the integrity and fluidity of biological membranes is a critical cellular homeostatic function. Signaling pathways that govern lipid bilayer fluidity have long been known in bacteria, yet no such pathways have been identified in eukaryotes. Here we identify mutants of the yeast Saccharomyces cerevisiae whose growth is differentially influenced by its two principal unsaturated fatty acids, oleic and palmitoleic acid. Strains deficient in the core components of the cell wall integrity (CWI) pathway, a MAP kinase pathway dependent on both Pkc1 (yeast's sole protein kinase C) and Rho1 (the yeast RhoA-like small GTPase), were among those inhibited by palmitoleate yet stimulated by oleate. A single GEF (Tus1) and a single GAP (Sac7) of Rho1 were also identified, neither of which participate in the CWI pathway. In contrast, key components of the CWI pathway, such as Rom2, Bem2 and Rlm1, failed to influence fatty acid sensitivity. The differential influence of palmitoleate and oleate on growth of key mutants correlated with changes in membrane fluidity measured by fluorescence anisotropy of TMA-DPH, a plasma membrane-bound dye. This work provides the first evidence for the existence of a signaling pathway that enables eukaryotic cells to control membrane fluidity, a requirement for division, differentiation and environmental adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity

Lipid metabolism and receptor-mediated signaling are highly intertwined processes that cooperate to fulfill cellular functions and safeguard cellular homeostasis. Activation of Toll-like receptors (TLRs) leads to a complex cellular response, orchestrating a diverse range of inflammatory events that need to be tightly controlled. Here, we identified the GPI-anchored Sphingomyelin Phosphodiestera...

متن کامل

The Glycerophosphoinositols: From Lipid Metabolites to Modulators of T-Cell Signaling

Glycerophosphoinositols (GPIs) are bioactive, diffusible phosphoinositide metabolites of phospholipase A2 that act both intracellularly and in a paracrine fashion following their uptake by specific transporters. The most representative compound, glycerophosphoinositol (GroPIns), is a ubiquitous component of eukaryotic cells that participates in central processes, including cell proliferation an...

متن کامل

Integral membrane proteins Brr6 and Apq12 link assembly of the nuclear pore complex to lipid homeostasis in the endoplasmic reticulum.

Cells of Saccharomyces cerevisiae lacking Apq12, a nuclear envelope (NE)-endoplasmic reticulum (ER) integral membrane protein, are defective in assembly of nuclear pore complexes (NPCs), possibly because of defects in regulating membrane fluidity. We identified BRR6, which encodes an essential integral membrane protein of the NE-ER, as a dosage suppressor of apq12 Delta. Cells carrying the temp...

متن کامل

A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes.

Epidermal growth factor receptor (EGFr) is a key mediator of cell communication during animal development and homeostasis. In Drosophila, the signaling event is commonly regulated by the polytopic membrane protein Rhomboid (RHO), which mediates the proteolytic activation of EGFr ligands, allowing the secretion of the active signal. Until very recently, the biochemical function of RHO had remain...

متن کامل

Calcineurin Signaling and Membrane Lipid Homeostasis Regulates Iron Mediated MultiDrug Resistance Mechanisms in Candida albicans

We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012